信息安全数学基础II第一次作业_初等数论

第1、2、3、4、5章

第1章 整数的可除性

(13)

Question

证明:形如 \(4k + 3\) 的素数有无穷多个.

Answer

证明:

\(\forall N \in \mathbf{I}_+\),

\(p_1, p_2, \cdots, p_n\) 为形如 \(4n + 3\) 的不大于 \(N\) 的所有素数,即形如 \(4n + 3\) 的素数个数有限.

\(q = 4 \cdot \prod\limits_{i = 1}^{k} p_i - 1\)\(p_i\) 显然不为 \(q\) 的素因数.

  1. \(q\) 为素数

    \(\because q = 4 \cdot \prod\limits_{i = 1}^{k} p_i - 1 = 4(\prod\limits_{i = 1}^{k} p_i - 1) + 3\)

    \(q\) 也为形如 \(4n + 3\) 的素数,显然有 \(q \gt N\),表明存在大于 N 的形如 \(4n + 3\) 的素数.

  2. \(q\) 不为素数

    先证明:形如 \(4n + 3\) 的正整数必有形如 \(4n + 3\) 的素因数.

    易知一切奇素数可写成 \(4k + 1\)\(4k + 3\quad (k \in I)\) 的形式.
    \((4k_1 + 1)(4k_2 + 1) = 4(4 k_1 k_2 + k_1 + k_2) + 1\) 不形如 \(4n + 3\),
    \(4n + 3\) 分解成的素因数乘积一定含 \(4n + 3\) 形式的素数.

    \(q\) 必含形如 \(4n + 3\) 的素因数 \(p\),且 \(p \not = p_i\ (i = 1, 2, \cdots, k)\), 则 \(p \gt N\)
    表明存在大于 \(N\) 的形如 \(4n + 3\) 的素数 \(p\).

由于 \(N\) 为任取正整数,则证明形如 \(4n + 3\) 的素数有无穷多个.

(17)

Question

将二进制 \((111100011110101)_2, (10111101001110)_2\) 转换为十六进制.

Answer

解:

\((0111\ 1000\ 1111\ 0101)_2 = (78\mathrm{F}5)_{16}\).

\((0010\ 1111\ 0100\ 1110)_2 = (2\mathrm{F}4\mathrm{E})_{16}\).

(18)

Question

将十六进制 \((\mathrm{ABCDEFA})_{16}, (\mathrm{DEFACEDA})_{16}, (9\mathrm{A}0\mathrm{AB})_{16}\) 转换为二进制.

Answer

\((\mathrm{ABCDEFA})_{16} = (1010\ 1011\ 1100\ 1101\ 1110\ 1111\ 1010)_2\).

\((\mathrm{DEFACEDA})_{16} = (1101\ 1110\ 1111\ 1010\ 1100\ 1110\ 1101\ 1010)_2\).

\((9\mathrm{A}0\mathrm{AB})_{16} = (1001\ 1010\ 0000\ 1010\ 1011)_2\).

(28)

Question

求以下整数对的最大公因数:

\((20785, 44350)\).

Answer

解:

\[ \begin{aligned} 44350 &= 2 \times 20785 + 2780 20785 &= 7 \times 2780 + 1325 2780 &= 2 \times 1325 + 130 1325 &= 10 \times 130 + 25 130 &= 5 \times 25 + 5 25 &= 5 \times 5 \end{aligned} \]

\(\therefore\) 最大公因数是 \(5\).

(32)

Question

运用广义欧几里德除法求整数 \(s, t\) 使得 \(s \cdot a + t \cdot b = (a, b)\).

\((1613, 3589).\qquad\)\((2947, 3772).\)

Answer

解:

\[ \begin{aligned} 3589 &= 2 \times 1613 + 363 \\ 1613 &= 4 \times 363 + 161 \\ 363 &= 2 \times 161 + 41 \\ 161 &= 3 \times 41 + 38 \\ 41 &= 1 \times 38 + 3 \\ 38 &= 12 \times 3 + 2 \\ 3 &= 1 \times 2 + 1 \\ 2 &= 2 \times 1 \\ \ \\ (1613, 3589) = 1 &= 3 - 2 \\ &= 3 + 12 \times 3 - 38 \\ &= 13 \times (41 - 38) - 38 \\ &= 13 \times 41 - 14 \times (161 - 3 \times 41) \\ &= 55 \times (363 - 2 \times 161) - 14 \times 161 \\ &= 55 \times 363 - 124 \times (1613 - 4 \times 363) \\ &= 551 \times (3589 - 2 \times 1613) - 124 \times 1613 \\ &= 551 \times 3589 - 1226 \times 1613 \\ \end{aligned} \]

\(\therefore\ (1613, 3589) = 1 = (- 1226) \times 1613 + 551 \times 3589\)

\[ \begin{aligned} 3772 &= 1 \times 2947 + 825 \\ 2947 &= 3 \times 825 + 472 \\ 825 &= 1 \times 472 + 353 \\ 472 &= 1 \times 353 + 119 \\ 353 &= 2 \times 119 + 115 \\ 119 &= 1 \times 115 + 4 \\ 115 &= 28 \times 4 + 3 \\ 4 &= 1 \times 3 + 1 \\ 3 &= 3 \times 1 \\ \ \\ (2947, 3772) = 1 &= 4 - 3 \\ &= 4 + 28 \times 4 - 115 \\ &= 29 \times (119 - 115) - 115 \\ &= 29 \times 119 - 30 \times (353 - 2 \times 119) \\ &= 89 \times (472 - 353) - 30 \times 353 \\ &= 89 \times 472 - 119 \times (825 - 472) \\ &= 208 \times (2947 - 3 \times 825) - 119 \times 825 \\ &= 208 \times 2947 - 743 \times (3772 - 2947) \\ &= 951 \times 2947 - 743 \times 3772 \\ \end{aligned} \]

\(\therefore\ (2947, 3772) = 1 = 951 \times 2947 - 743 \times 3772\)

(50)

Question

求出下列各对数的最小公倍数.

\([132, 253]\).

Answer

解:

\[ \begin{aligned} 253 &= 1 \times 132 + 121 \\ 132 &= 1 \times 121 + 11 \\ 121 &= 11 \times 11 \end{aligned} \]

\(\therefore\ (132, 253) = 11\).

\(\therefore\ [132, 253] = \frac{132 \times 253}{(132, 253)} = \frac{11 \times 12 \times 11 \times 23}{11} = 11 \times 12 \times 23 = 29436\).

第2章 同余

(2)

Question

证明:当 \(m \gt 2\) 时,\(0^2, 1^2, \cdots, (m-1)^2\) 一定不是模 \(m\) 的完全剩余系.

Answer

证明:

\(\because\ m > 2, (m - 1)^2 = m^2 - 2m + 1 = m(m - 2) + 1 \equiv 1 \pmod{m}\)

\(1\) 和任意 \((m - 1)^2\) 在同一剩余类中,则 \(m > 2\) 时,

\(0^2, 0^1, \cdots, (m - 1)^2\) 一定不是模 \(m\) 的完全剩余类.

(6)

Question

\(2003\)\(5\)\(9\) 日是星期五,问第 \(2^{20080509}\) 天是星期几 \(?\)

Answer

解:

\(2^1 \equiv 2 \pmod{7},\qquad 2^2 \equiv 4 \pmod{7}, \qquad 2^3 \equiv 1 \pmod{7}\)

\(20080509 = 3 \times 6693503\)

\(\therefore\ 2^{20080509} = (2^3)^{6693503} \equiv 1 \pmod{7}\)

\(\therefore\) 是星期六.

(9)

Question

\(n = pq\),其中 \(p, q\) 是素数. 证明:如果 \(a^2 \equiv b^2 \pmod{n},\ n \nmid a - b,\ n \nmid a + b\),则 \((n, a - b) \gt 1, (n, a + b) \gt 1\).

Answer

证明:

\(\because\ a^2 \equiv b^2 \pmod{n}\)

\(\therefore\)\(a^2 - b^2 = kn = (a + b)(a - b), k \in \mathbf{Z}\)

\(\Rightarrow\ n \mid (a + b)(a - b), kpq = (a + b)(a - b)\)

\(\because\ n \nmid (a - b), n \nmid (a + b)\)

则如设 \(p \mid a - b, q \mid a + b\),则 \(p \nmid a + b, q \nmid a - b\).

\(\therefore\ (p, a + b) = 1 = (q, a - b)\)

\(\therefore\\ (n, a - b) = (pq, a - b) = (p, a - b) = p > 1 \\ (n, a + b) = (pq, a + b) = (q, a + b) = q > 1\)

(12)

Question

列出 \(\mathbf{Z} / 7\mathbf{Z}\) 中的加法表和乘法表.

Answer

解:

\(\mathbf{Z} / 7\mathbf{Z} = \{0, 1, 2, 3, 4, 5, 6\}\).

加法表

\(\oplus\) 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

乘法表

\(\otimes\) 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

(31)

Question

证明:如果 \(c_1, c_2, \cdots, c_{\varphi(m)}\) 是模 \(m\) 的简化剩余系,那么

\[ c_1 + c_2 + \cdots + c_{\varphi(m)} \equiv 0 \pmod{m}. \]

Answer

证明:

\(\because\ C_1, C_2, \cdots, C_{\varphi(m)}\) 是模 \(m\) 的简化剩余系.

而对任意 \(C_i\)\((m - C_i) + C_i \equiv 0 \pmod{m}\).

\(m - C_i\) 属于模 \(m\) 的简化剩余系.

\(\therefore\ c_1 + c_2 + \cdots + c_{\varphi(m)} \equiv 0 \pmod{m}\).

第3章 同余式

(1)

Question

求出下列一次同余方程的所有解.

\(17x \equiv 14 \pmod{21}\).

Answer

解:

\(\because\ (17, 21) = 1 \mid 14\)

\(\therefore\) 有解.

求出 \(7x \equiv 1 \pmod{21}\) 的一个特解 \(x_0' \equiv 5 \pmod{21}\).

\(17x \equiv 14 \pmod{21}\) 的一个特解 \(x_0 \equiv 14x_0' \equiv 14 \cdot 5 \equiv 7 \pmod{21}\).

所有解为 \(x \equiv 7 \pmod{21}\).

(10)

Question

证明:同余方程组 \(\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \end{cases}\)

有解当且仅当 \((m_1, m_2) \mid (a_1 - a_2)\). 并证明若有解,该解模 \(([m_1, m_2])\) 是唯一的.

Answer

证明:

必要性:

有解 \(\Rightarrow\ (m_1, m_2) = 1 \mid (a_1 - a-2)\),显然成立.

充分性:

\(x \equiv y_1 m_1 + a_1 \Rightarrow y_1 m_1 \equiv a_2 - a_1 \pmod{m_2}\).

有解 \(y_1 \equiv y_0 \pmod{m_2}\).

\(x_0 = a_1 + m_1 y_0\),则 \(x_0 \equiv a_1 \pmod{m_1}\),且

\(x_0 = a_1 + m_1 y_0 \equiv a_2 \pmod{m_2}\)

\(\therefore\ x_0\) 为同余方程组的解.

\(x_1, x_2\) 为方程组的解,则 \(x_1 \equiv x_2 \pmod{m_1}, x_1 \equiv x_2 \pmod{m_2}\).

\(\therefore\ x_1 \equiv x_2 \pmod{[m_1, m_2]}\),解模 \(([m_1, m_2])\) 是唯一的.

(16)

Question

求下列一次同余方程组的解.

\(\begin{cases} x + 2y \equiv 1 \pmod{7} \\ 2x + y \equiv 1 \pmod{7} \end{cases}\).

Answer

解:

\[ \begin{cases} x + 2y \equiv 1 \pmod{7} \\ 2x + y \equiv 1 \pmod{7} \end{cases} \Rightarrow \begin{cases} x + y \equiv 3 \pmod{7} \\ x - y \equiv 0 \pmod{7} \end{cases} \]

\[ \therefore \begin{cases} x \equiv 5 \pmod{7} \\ y \equiv 5 \pmod{7} \end{cases} \]

(19)

Question

将同余式方程化为同余式组来求解.

\((\mathrm{i})\ 23x \equiv 1 \pmod{140};\qquad (\mathrm{ii})\ 17x \equiv 229 \pmod{1540}\).

Answer

解:

\((\mathrm{i})\)

\[ 23x \equiv 1 \pmod{140} \Rightarrow \begin{cases} 23x \equiv 1 \pmod{4} \\ 23x \equiv 1 \pmod{5} \\ 23x \equiv 1 \pmod{7} \end{cases} \Rightarrow \begin{cases} x \equiv 3 \pmod{4} \\ x \equiv 2 \pmod{5} \\ x \equiv 4 \pmod{7} \end{cases} \]

\(\therefore\ m_1 = 4, m_2 = 5, m_3 = 7\).

\(\therefore\ M_1 = 35, M_2 = 28, M_3 = 20\).

\[ \begin{cases} 35M_1' \equiv 1 \pmod{4} \\ 28M_2' \equiv 1 \pmod{5} \\ 20M_3' \equiv 1 \pmod{7} \end{cases} \Rightarrow \begin{cases} M_1' = 3 \\ M_2' = 2 \\ M_3' = 6 \end{cases} \]

\(\therefore\ x \equiv 3 \cdot 3 \cdot 25 + 2 \cdot 2 \cdot 28 + 4 \cdot 6 \cdot 20 \pmod{140} \Rightarrow x \equiv 67 \pmod{140}\).

\((\mathrm{ii})\)

\[ 17x \equiv 229 \pmod{1540} \Rightarrow \begin{cases} 17x \equiv 1 \pmod{4} \\ 17x \equiv 4 \pmod{5} \\ 17x \equiv 5 \pmod{7} \\ 17x \equiv 9 \pmod{11} \end{cases} \Rightarrow \begin{cases} x \equiv 1 \pmod{4} \\ x \equiv 2 \pmod{5} \\ x \equiv 4 \pmod{7} \\ x \equiv 7 \pmod{11} \end{cases} \]

\(\therefore\ m_1 = 4, m_2 = 5, m_3 = 7, m_4 = 11\).

\(\therefore\ M_1 = 385, M_2 = 308, M_3 = 220, M_4 = 140\).

\[ \begin{cases} 385M_1' \equiv 1 \pmod{4} \\ 308M_2' \equiv 1 \pmod{5} \\ 220M_3' \equiv 1 \pmod{7} \\ 140M_4' \equiv 1 \pmod{11} \end{cases} \Rightarrow \begin{cases} M_1' = 1 \\ M_2' = 2 \\ M_3' = 5 \\ M_4' = 7 \end{cases} \]

\(\therefore\ x \equiv 1 \cdot 1 \cdot 385 + 2 \cdot 2 \cdot 308 + 5 \cdot 4 \cdot 220 + 7 \cdot 7 \cdot 140 \pmod{1540} \Rightarrow x \equiv 557 \pmod{1540}\).

(23)

Question

求解同余式

\[ 3x^{14} + 4x^{13} + 2x^{11} + x^9 + x^6 + x^3 + 12x^2 + x \equiv 0 \pmod{7}. \]

Answer

解:

\[ \begin{aligned} 3x^{14} + 4x^{13} + 2x^{11} + x^9 + x^6 + x^3 + 12x^2 + x &\equiv 0 \pmod{7} \\ (x^7 - x)(3x^7 + 4x^6 + 2x^4 + x^2 + 3x + 4) + x^6 + 2x^5 + 2x^3 + 15x^2 + 5x &\equiv 0 \pmod{7} \\ x^6 + 2x^5 + 2x^3 + 15x^2 + 5x &\equiv 0 \pmod{7} \end{aligned} \]

代入 \(x = 0, 1, 2, 3, 4, 5, 6\)

\(x \equiv 0 \pmod{7} \Rightarrow x \equiv 6 \pmod{7}\).

(24)

Question

求解同余式

\[ f(x) \equiv x^4 + 7x + 4 \equiv 0 \pmod{243}. \]

Answer

解:

求导 \(f'(x) = 4x^3 + 7 \pmod{243}\).

\(243 = 3^5\).

\(\therefore\ f(x) \equiv 0 \pmod{3} \Rightarrow x_1 \equiv 1 \pmod{3}\).

\(x = 1 + 3 \cdot t_1\) 代入 \(f(x) \equiv 0 \pmod{9}\).

\(f(1) + f'(1)t_1 \cdot 3 \equiv 0 \pmod{9} \Rightarrow f(1) \equiv 3 \pmod{9}, f'(1) \equiv 2 \pmod{9}\).

\(\therefore\ 3 + 6t_1 \equiv 0 \pmod{9}\)\(2t_1 \equiv -1 \pmod{3}\).

\(\therefore\ t_1 \equiv 1 \pmod{3}\).

\(\therefore\ f(x) \equiv 0 \pmod{9} \Rightarrow x_2 \equiv 1 + 3 \cdot t_1 \equiv 4 \pmod{9}\).

\(x = 4 + 9 \cdot t_2\) 代入 \(f(x) \equiv 0 \pmod{27}\).

\(f(4) \equiv 18 \pmod{27}, f'(4) \equiv 20 \pmod{27}\).

\(\therefore\ 18 + 20t_2 \cdot 9 \equiv 0 \pmod{27} \Rightarrow 2t_2 \equiv -2 \pmod{3}\).

\(\therefore\ t_2 \equiv 2 \pmod{3}\).

\(\therefore\ x_3 \equiv 4 + 9 \cdot t_2 \equiv 22 \pmod{27}\).

\(x = 22 + 27 \cdot t_3\) 代入 \(f(x) \equiv 0 \pmod{81}\).

\(f(22) \equiv 0 \pmod{81}, f'(22) \equiv 7 \pmod{81}\).

\(\therefore\ 0 + 7t_3 \cdot 1 \equiv 0 \pmod{3}\).

\(\therefore\ t_3 \equiv 0 \pmod{3}\).

\(\therefore\ x_4 \equiv x_3 + 27 \cdot t_3 \equiv 22 \pmod{81}\).

\(f(22) \equiv 162 \pmod{243}, f'(22) \equiv 6 \pmod{243}\).

\(\therefore\ 162 + 27t_4 \cdot 6 \equiv 0 \pmod{243}\).

\(\therefore\ t_4 \equiv 2 \pmod{3}\).

\(\therefore\ x_5 \equiv x_4 + 81 \cdot t_4 \equiv 184 \pmod{243}\).

\(\therefore\) 解为 \(x \equiv 84 \pmod{243}\).

第4章 二次同余式与平方剩余

(4)

Question

求满足方程 \(E: y^2 = x^3 - 2x + 3 \pmod{7}\) 的所有点.

Answer

解:

\(x = 0, 1, 2, 3, 4, 5, 6\) 分别求 \(y\).

\(x = 0, y^2 \equiv 3 \pmod{7}\),无解.

\(x = 1, y^2 \equiv 2 \pmod{7}\)\(y = 3, 4 \pmod{7}\).

\(x = 2, y^2 \equiv 0 \pmod{7}\)\(y = 0 \pmod{7}\).

\(x = 3, y^2 \equiv 3 \pmod{7}\),无解.

\(x = 4, y^2 \equiv 3 \pmod{7}\),无解.

\(x = 5, y^2 \equiv 6 \pmod{7}\),无解.

\(x = 6, y^2 \equiv 4 \pmod{7}\)\(y = 2, 5 \pmod{7}\).

\(\therefore\)\(5\) 个点.

(10)

Question

求解同余式 \(x^2 \equiv 79 \pmod{105}\).

Answer

解:

\(\because\ 105 = 3 \cdot 5 \cdot 7\)

\(\therefore\) 原同余式等价于同余式组

\[ \begin{cases} x^2 \equiv 79 \equiv 1 \pmod{3} \\ x^2 \equiv 79 \equiv 4 \pmod{5} \\ x^2 \equiv 79 \equiv 2 \pmod{7} \end{cases} \Rightarrow \begin{cases} x = x_1 \equiv \pm 1 \pmod{3} \\ x = x_2 \equiv \pm 2 \pmod{5} \\ x = x_3 \equiv \pm 3 \pmod{7} \end{cases} \]

\(\therefore\ m_1 = 3, m_2 = 5, m_3 = 7, m = 105\).

\(\therefore\ M_1 = 35, M_2 = 21, M_3 = 15\).

\(\therefore\ M_1' = 2, M_2' = 1, M_3' = 1\).

\(\therefore\ x \equiv 70b_1 + 21b_2 + 15b_3 \pmod{105} \Rightarrow\)

\[ \begin{aligned} x &\equiv& 70 + 42 + 45 &\equiv 52 \pmod{105} \\ x &\equiv& 70 + 42 - 45 &\equiv 67 \pmod{105} \\ x &\equiv& 70 - 42 + 45 &\equiv 73 \pmod{105} \\ x &\equiv& 70 - 42 - 45 &\equiv 88 \pmod{105} \\ x &\equiv& -70 + 42 + 45 &\equiv 17 \pmod{105} \\ x &\equiv& -70 + 42 - 45 &\equiv 32 \pmod{105} \\ x &\equiv& -70 - 42 + 45 &\equiv 38 \pmod{105} \\ x &\equiv& -70 - 42 - 45 &\equiv 53 \pmod{105} \end{aligned} \]

(20)

Question

\(\bigg(\frac{151}{373}\bigg);\quad\)\(\bigg(\frac{151}{373}\bigg);\quad\)\(\bigg(\frac{151}{373}\bigg);\)

Answer

解:

\[ \begin{aligned} &\bigg(\frac{151}{373}\bigg) \\ \ \\ &= \bigg(\frac{373}{151}\bigg) \cdot (-1)^{\frac{151 - 1}{2} \cdot \frac{373 - 1}{2}} \\ \ \\ &= \bigg(\frac{71}{151}\bigg) \\ \ \\ &= \bigg(\frac{151}{71}\bigg) \cdot (-1)^{\frac{151 - 1}{2} \cdot \frac{373 - 1}{2}} \\ \ \\ &= -\bigg(\frac{9}{71}\bigg) \\ \ \\ &= -\bigg(\frac{3^2}{71}\bigg) \\ \ \\ &= -1 \\ \ \\ \end{aligned} \]

\[ \begin{aligned} &\bigg(\frac{911}{2003}\bigg) \\ \ \\ &= \bigg(\frac{2003}{911}\bigg) \cdot (-1)^{\frac{911 - 1}{2} \cdot \frac{2003 - 1}{2}} \\ \ \\ &= -\bigg(\frac{181}{911}\bigg) \\ \ \\ &= -\bigg(\frac{911}{181}\bigg) \cdot (-1)^{\frac{181 - 1}{2} \cdot \frac{911 - 1}{2}} \\ \ \\ &= -\bigg(\frac{6}{181}\bigg) \\ \ \\ &= -\bigg(\frac{2}{181}\bigg) \cdot \bigg(\frac{3}{181}\bigg) \\ \ \\ &= -(-1)^{\frac{181^2 - 1}{8}} \cdot \bigg(\frac{181}{3}\bigg) \cdot (-1)^{\frac{181 - 1}{2} \cdot \frac{3 - 1}{2}} \\ \ \\ &= \bigg(\frac{1}{3}\bigg) \\ \ \\ &= 1 \\ \ \\ \end{aligned} \]

\[ \begin{aligned} &\bigg(\frac{37}{200723}\bigg) \\ \ \\ &= \bigg(\frac{200723}{37}\bigg) \cdot (-1)^{\frac{37 - 1}{2} \cdot \frac{200723 - 1}{2}} \\ \ \\ &= \bigg(\frac{35}{37}\bigg) \\ \ \\ &= \bigg(\frac{5}{37}\bigg) \cdot \bigg(\frac{7}{37}\bigg) \\ \ \\ &= \bigg(\frac{37}{5}\bigg) \cdot (-1)^{\frac{5 - 1}{2} \cdot \frac{37 - 1}{2}} \cdot \bigg(\frac{37}{7}\bigg) \cdot (-1)^{\frac{7 - 1}{2} \cdot \frac{37 - 1}{2}} \\ \ \\ &= \bigg(\frac{2}{5}\bigg) \cdot \bigg(\frac{2}{7}\bigg) \\ \ \\ &= (-1)^{\frac{5^2 - 1}{8}} \cdot (-1)^{\frac{7^2 - 1}{8}} \\ \ \\ &= -1 \\ \ \\ \end{aligned} \]

(22)

Question

求下列同余方程的解数:

\(x^2 \equiv -2 \pmod{67};\qquad\)\(x^2 \equiv 2 \pmod{67};\)

Answer

解:

\[ \begin{aligned} &\bigg(\frac{-2}{67}\bigg) \\ \ \\ &= \bigg(\frac{-1}{67}\bigg) \cdot \bigg(\frac{2}{67}\bigg) \\ \ \\ &= (-1)^{\frac{67 - 1}{2}} \cdot (-1)^{\frac{67^2 - 1}{8}} \\ \ \\ &= 1 \\ \ \\ \end{aligned} \]

\(\therefore\) 有两个解.

\[ \begin{aligned} &\bigg(\frac{2}{67}\bigg) \\ \ \\ &= (-1)^{\frac{67^2 - 1}{8}} \\ \ \\ &= -1 \\ \ \\ \end{aligned} \]

\(\therefore\) 无解.

(26)

Question

判断下列同余方程是否有解:

\(x^2 \equiv 7 \pmod{227};\qquad\)\(11x^2 \equiv -6 \pmod{91};\)

Answer

解:

\[ \begin{aligned} &\bigg(\frac{7}{227}\bigg) \\ \ \\ &= \bigg(\frac{227}{7}\bigg) \cdot (-1)^{\frac{227 - 1}{2} \cdot \frac{7 - 1}{2}} \\ \ \\ &= -\bigg(\frac{3}{7}\bigg) \\ \ \\ &= -\bigg(\frac{7}{3}\bigg) \cdot (-1)^{\frac{3 - 1}{2} \cdot \frac{7 - 1}{2}} \\ \ \\ &= \bigg(\frac{1}{3}\bigg)\\ \ \\ &= 1 \\ \ \\ \end{aligned} \]

\(\therefore\ 7\)\(227\) 的平方剩余,有解.

\[ 11x^2 \equiv -6 \pmod{91} \Rightarrow x^2 \equiv 16 \pmod{91} \\ \Rightarrow \begin{cases} x^2 \equiv 3 \pmod{13} \\ x^2 \equiv 2 \pmod{7} \end{cases} \Rightarrow \begin{cases} x = x_1 \equiv \pm 4 \pmod{13} \\ x = x_2 \equiv \pm 3 \pmod{7} \end{cases} \\ \]

\(\therefore\ m_1 = 13, m_2 = 7\).

\(\therefore\ M_1 = 7, M_2 = 13\).

\(\therefore\ M_1' = 2, M_2' = 5\).

\(\therefore\ x \equiv 14b_1 + 65b_2 \pmod{91}\)

\(\therefore\) 有解.

(39)

Question

\(p = 401, q = 281\),求解下列同余式:

\((\mathrm{v})\ x^2 = 11 \pmod{pq}\).

Answer

解:

\(x^2 = 11 \pmod{pq}, p = 401, q = 281\)

\(\Rightarrow \begin{cases} x^2 \equiv 11 \pmod{401} \\ x^2 \equiv 11 \pmod{281} \end{cases}\).

\[ \begin{aligned} &\bigg(\frac{11}{281}\bigg) \\ \ \\ &= \bigg(\frac{281}{11}\bigg) \cdot (-1)^{\frac{281 - 1}{2} \cdot \frac{11 - 1}{2}} \\ \ \\ &= \bigg(\frac{6}{11}\bigg) \\ \ \\ &= \bigg(\frac{2}{11}\bigg) \bigg(\frac{3}{11}\bigg) \\ \ \\ &= (-1)^{\frac{11^2 - 1}{8}} \cdot \bigg(\frac{11}{3}\bigg) \cdot (-1)^{\frac{11 - 1}{2} \cdot \frac{3 - 1}{2}} \\ \ \\ &= (-1)^{\frac{3^2 - 1}{8}} \\ \ \\ &= -1 \\ \ \\ \end{aligned} \]

\(\therefore\) 无解.

第5章 原根与指标

(5)

Question

问模 \(47\) 的原根有多少个?求出模 \(47\) 的所有原根.

Answer

解:

\(\because\ 47\) 为素数.

\(\therefore\ \varphi(47) = 46 = 2 \times 43 \Rightarrow q_1 = 2, q_2 = 43\).

原根个数 \(n = \varphi(\varphi(m)) = \varphi(46) = \varphi(2) \cdot \varphi(23) = 22\).

只需验证 \(g^{23} \equiv 1 \pmod{47}, g^{2} \equiv 1 \pmod{47}\) 是否成立.

\(2, 3, 5\) 等进行验算.

\(2^2 \equiv 4, 2^3 \equiv 8, 2^4 \equiv 16,\)
\(2^7 \equiv 34, 2^8 \equiv 21, 2^{16} \equiv 1 \pmod{47}\).

\(3^2 \equiv 9, 3^3 \equiv 27, 3^4 \equiv 81,\)
\(3^7 \equiv 25, 3^8 \equiv 28, 3^{16} \equiv 32, 3^{23} \equiv 1 \pmod{47}\).

\(5^2 \equiv 4, 5^3 \equiv 31, 5^4 \equiv 14,\)
\(5^7 \equiv 11, 5^8 \equiv 8, 5^{16} \equiv 17, 5^{23} \equiv -1 \pmod{47}\).

\(\therefore\ g = 5\) 为模 \(47\) 的原根,\(g^d\) 遍历 \(47\) 的所有原根,其中

\(d = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45\).

\[ \begin{aligned} &5^1 = 5, &\quad &5^3 = 31, &\quad &5^5 = 23, \\ &5^7 = 11, &\quad &5^9 = 40, &\quad &5^{11} = 13, \\ &5^{13} = 43, &\quad &5^{15} = 41, &\quad &5^{17} = 38, \\ &5^{19} = 10, &\quad &5^{21} = 15, &\quad &5^{25} = 22, \\ &5^{27} = 33, &\quad &5^{29} = 26, &\quad &5^{31} = 39, \\ &5^{33} = 35, &\quad &5^{35} = 29, &\quad &5^{37} = 20, \\ &5^{39} = 30, &\quad &5^{41} = 45, &\quad &5^{43} = 44, \quad &5^{45} = 19 &\pmod{47}\\ \end{aligned} \]

\(22\) 个.

(10)

Question

\(p\)\(\frac{p - 1}{2}\) 都是素数,设 \(a\) 是与 \(p\) 互素的正整数. 证明 如果

\[ a \not \equiv 1,\quad a^2 \not \equiv 1,\quad a^{\frac{p - 1}{2}} \not \equiv 1 \pmod{p}, \]

\(a\) 是模 \(p\) 的原根.

Answer

证明:

\(\because\ p, \frac{p - 1}{2}\) 为素数.

\(\therefore\ \varphi(p) = p - 1 = 2 \cdot \frac{p - 1}{2}\).

\(\therefore\ q_1 = 2, q_2 = \frac{p - 1}{2}\).

\(a^{\frac{\varphi(p)}{2}} \not \equiv 1 \pmod{p}, a^2 = a^{\frac{\varphi(p)}{\frac{p - 1}{2}}} \not \equiv 1 \pmod{p}\).

\(\therefore\ a\) 为模 \(p\) 的原根.

(17)

Question

求解同余式

\[ x^{22} \equiv 29 \pmod{41} \]

Answer

解:

\(\because\ (n, \varphi(m)) = (22, \varphi(41)) = (22, 40) = 2\),

\(\mathrm{ind} 29 = 7, (2, 7) = 1\),

\(\therefore\) 该同余式无解.

PDF Resource

Preview