信息安全数学基础II第二次作业_抽象代数
第8、10、11、13章
第8章 群
(4)
Question
设 \(G\) 是 \(n\) 阶有限群. 证明:对任意元 \(a \in G\),有 \(a^n = e\).
Answer
证明:
\(G\) 是 \(n\) 阶有限群,设 \(H\) 为 \(G\) 的 \(m\) 阶交换群.
由拉格朗日定理得 \(m \mid n\),只需证 \(a^m = e\).
设 \(a_1, a_2, \cdots, a_k\) 为 \(H\) 内不同元素,则 \(aa_1, aa_2, \cdots, aa_k\) 也为 \(H\) 内不同元素.
而 \(e \cdot a_1 a_2 \cdots a_k = a_1 \cdot a_2 \cdots a_k = aa_1 \cdot aa_2 \cdots aa_k = a^k a_1 a_2 \cdots a_k\)
即 \(a^k = e = a^m\),得证.
(5)
Question
证明:群 \(G\) 中的元素 \(a\) 与其逆元 \(a^{-1}\) 有相同的阶.
Answer
证明:
设 \(\mathrm{ord}(a) = n \not ={m} = \mathrm{ord}(a^{-1})\)
\(\therefore\ a^n = e\)
\(\therefore\ (a^{-1})^n = (a^{-1})^n a^n = e\)
\(\therefore\ m \mid n\)
同理 \((a^{-1})^m = e,\ a^m = a^m \cdot (a^{-1})^m = e\)
\(\therefore\ n \mid m\)
从而 \(n = m\),得证.
(10)
Question
给出 \(\boldsymbol{F}_7\) 中的加法表和乘法表.
Answer
解:
\(\boldsymbol{F}_7 = \boldsymbol{Z} / 7\boldsymbol{Z} = \{0, 1, 2, 3, 4, 5, 6\}\).
加法表
\(\oplus\) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
2 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
3 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
4 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
5 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
6 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
乘法表 (\(\boldsymbol{F}_7^*\))
\(\otimes\) | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
1 | 1 | 2 | 3 | 4 | 5 | 6 |
2 | 2 | 4 | 6 | 1 | 3 | 5 |
3 | 3 | 6 | 2 | 5 | 1 | 4 |
4 | 4 | 1 | 5 | 2 | 6 | 3 |
5 | 5 | 3 | 1 | 6 | 4 | 2 |
6 | 6 | 5 | 4 | 3 | 2 | 1 |
(11)
Question
求出 \(\boldsymbol{F}_{23}\) 的生成元.
Answer
解:
\(23\) 是素数,则 \(\boldsymbol{F}_{23}\) 是循环群,\(\varphi(23) = 22 = 2 \times 11\).
\(\mathrm{ord}_{23}(-1) = 2,\qquad 2^{11} \equiv 1 \pmod{23} \Rightarrow \mathrm{ord}_{23}(2) = 11,\qquad (2,\ 11) = 1\)
\(\therefore \mathrm{ord}_{23}(-2) = 2 \times 11 = 22,\qquad \therefore -2(21)\) 为一个生成元. (或查原根表得 \(5\) 是 \(23\) 的一个原根,即为一个生成元).
找 \(p - 1 = 22\) 的完全剩余系,枚举得 \(1, 3, 5, 7, 9, 13, 15, 17, 19, 21\) 符合条件(检验共 \(\varphi(22) = \varphi(2) \times \varphi(11) = 1 \times 10 = 10\) 个,正确)
$(-2)^{1} = -2 (-2)^{3} = -8 $
\((-2)^{5} = -32 \equiv 14 \pmod{23} \quad(-2)^{7} = -128 \equiv 10 \pmod{23}\)
\((-2)^{9} = -512 \equiv 17 \pmod{23} \quad (-2)^{13} = -8192 \equiv 19 \pmod{23}\)
\((-2)^{15} = -32768 \equiv 7 \pmod{23} \quad(-2)^{17} = -131072 \equiv 5 \pmod{23}\)
\((-2)^{19} \equiv 20 \pmod{23} \quad (-2)^{21} \equiv 11 \pmod{23}\)
\(\therefore\ \boldsymbol{F}_{23}\) 的所有生成元为 \(5, 7, 10, 11, 14, 15, 17, 19, 20, 21\).
(12)
Question
证明:\(\mathbf{Z} / n\mathbf{Z}\) 中的可逆元对乘法构成一个群,记作 \(\mathbf{Z} / n\mathbf{Z}^*\).
Answer
证明:
对 \(\boldsymbol{Z} / n\boldsymbol{Z}\) 中任意元素均有结合律,且存在单位元.
其中任意可逆元 \(a\) 满足 \(a^{-1} \cdot a = a \cdot a^{-1} = e\).
则构成群.
第10章 环与理想
(6)
Question
证明集合 \(\mathbf{Z}[\sqrt{2}] = \{a + b \sqrt{2} \mid a, b \in \mathbf{Z} \}\) 对于通常的加法和乘法构成一个整环.
Answer
证明:
\(\mathbf{Z}[\sqrt{2}]\) 对于加法有 \[ (a + b\sqrt{2}) \oplus (c + d\sqrt{2}) = (a + c) + (b + d) \sqrt{2} \]
构成交换加群,零元为 \(0\). 对任意 \((a + b\sqrt{2})\) 的负(逆)元为 \(-(a + b\sqrt{2})\).
\(\mathbf{Z}[\sqrt{2}]\) 对于乘法有 \[ (a + b\sqrt{2}) \otimes (c + d\sqrt{2}) = (ac) + 2 \cdot (bd) + (ad + bc)\sqrt{2} \]
满足结合律和分配律,且满足交换律,有单位元 \(1\).
可以找到 \(3, 2 + \sqrt{2}\) 为不可约元,\(2 = (2 + \sqrt{2})(2 - \sqrt{2})\) 为可约元.
若 \(a + b\sqrt{2} \not ={0}\) 是零因子,则存在非零元 \(c + d\sqrt{2}\) 使 \[ (a + b\sqrt{2}) \otimes (c + d\sqrt{2}) = (ac + 2 \cdot bd) + (ad + bc)\sqrt{2} = 0 \]
则 \(ac + 2bd = 0,\ ad + bc = 0 \Rightarrow ac^2 = (-2bd)c = 2ad^2 \Rightarrow a(c^2 - 2d^2) = 0\).
\(\therefore\ c^2 = 2d^2\).
\(\therefore\ c = \sqrt{2}d\).
而 \(c,\ d\) 是整数,\(\therefore \sqrt{2} d\) 不为整数,矛盾. \(\therefore\) 无零因子.
因此 \(\mathbf{Z}[\sqrt{2}]\) 对于通常的加法和乘法构成一个整环.
(15)
Question
设 \(D\) 是无平方因数的整数. 证明集合 \(\mathbf{Q}[\sqrt{D}] = \{a + b \sqrt{D} \mid a, b \in \mathbf{Q} \}\) 对于通常的加法和乘法构成一个域.
Answer
证明:
\(\mathbf{Q}[\sqrt{D}]\) 对于加法有 \[ (a + b\sqrt{D}) \oplus (c + d\sqrt{D}) = (a + c) + (b + d) \sqrt{D} \]
构成交换加群,零元为 \(0\). 对任意 \((a + b\sqrt{D})\) 的负(逆)元为 \(-(a + b\sqrt{D})\).
\(\mathbf{Q}[\sqrt{D}]\) 对于乘法有 \[ (a + b\sqrt{D}) \otimes (c + d\sqrt{D}) = (ac) + 2 \cdot (bd) + (ad + bc)\sqrt{D} \]
\(\mathbf{Q}^*[\sqrt{D}] = \mathbf{Q}[\sqrt{D}] / \{0\}\),有单位元 \(1\). 对任意 \((a + b\sqrt{D})\) 的逆元为
\[ (a + b\sqrt{D})^{-1} = \frac{a}{a^2 - b^2 D} + \big(-\frac{b}{a^2 - b^2 D} \big)\sqrt{D}\quad (a \not ={0}, b \not ={0}) \]
因此集合 \(\mathbf{Q}[\sqrt{D}] = \{a + b \sqrt{D} \mid a, b \in \mathbf{Q} \}\) 对于通常的加法和乘法构成一个域.
第11章 多项式环
(3)
Question
设 \(a(x),\ b(x)\) 是数域 \(\boldsymbol{F}_2\) 上的多项式,试计算 \(s(x),\ t(x)\) 使得
\[ s(x) \cdot a(x) + t(x) \cdot b(x) = (a(x), b(x)). \]
① \(\ a(x) = x^2 + x + 1,\ b(x) = x^8 + x^4 + x^3 + x + 1.\)
② \(\ a(x) = x^3 + x + 1,\ b(x) = x^8 + x^4 + x^3 + x + 1.\)
③ \(\ a(x) = x^4 + x + 1,\ b(x) = x^8 + x^4 + x^3 + x + 1.\)
Answer
解:
① \(\ a(x) = x^2 + x + 1,\ b(x) = x^8 + x^4 + x^3 + x + 1.\)
\[ \begin{aligned} &1.\ &b(x) &= q_0(x) \cdot a(x) + r_0(x),\ &q_0(x) &= x^6,\ &r_0(x) &= x^7 + x^6 + x^4 + x^3 + x + 1 \\ &2.\ &a(x) &= q_1(x) \cdot r_0(x) + r_1(x),\ &q_1(x) &= 0,\ &r_1(x) &= x^2 + x + 1 \\ &3.\ &r_0(x) &= q_2(x) \cdot r_1(x) + r_2(x),\ &q_2(x) &= x^5,\ &r_2(x) &= x^5 + x^4 + x^3 + x + 1 \\ &4.\ &r_1(x) &= q_3(x) \cdot r_2(x) + r_3(x),\ &q_3(x) &= 0,\ &r_3(x) &= x^2 + x + 1 \\ &5.\ &r_2(x) &= q_4(x) \cdot r_3(x) + r_4(x),\ &q_4(x) &= x^3,\ &r_4(x) &= x + 1 \\ &6.\ &r_3(x) &= q_5(x) \cdot r_4(x) + r_5(x),\ &q_5(x) &= x,\ &r_5(x) &= 1 \\ \ \\ \end{aligned} \]
\[ \begin{aligned} 1 = r_5(x) &= q_5(x)(q_4(x) \cdot r_3(x) + r_2(x)) + r_3(x) \\ &= (x^4 + 1)(q_3(x) \cdot r_2(x) + r_1(x)) + (x) \cdot r_2(x) \\ &= (x)(q_2(x) \cdot r_1(x) + r_0(x)) + (x^4 + 1) \cdot r_1(x) \\ &= (x^6 + x^4 + 1)(q_1(x) \cdot r_0(x) + a(x)) + (x) \cdot r_0(x) \\ &= (x)(q_0(x) \cdot a(x) + b(x)) + (x^6 + x^4 + 1) \cdot a(x) \\ &= (x^7 + x^6 + x^4 + 1)(a(x)) + (x) \cdot b(x) \\ \ \\ \end{aligned} \]
\[ \therefore\ s(x) = x^7 + x^6 + x^4 + 1,\quad t(x) = x. \]
② \(\ a(x) = x^3 + x + 1,\ b(x) = x^8 + x^4 + x^3 + x + 1.\)
\[ \begin{aligned} &1.\ &b(x) &= q_0(x) \cdot a(x) + r_0(x),\ &q_0(x) &= x^5,\ &r_0(x) &= x^6 + x^5 + x^4 + x^3 + x + 1 \\ &2.\ &a(x) &= q_1(x) \cdot r_0(x) + r_1(x),\ &q_1(x) &= 0,\ &r_1(x) &= x^3 + x + 1 \\ &3.\ &r_0(x) &= q_2(x) \cdot r_1(x) + r_2(x),\ &q_2(x) &= x^3,\ &r_2(x) &= x^5 + x + 1 \\ &4.\ &r_1(x) &= q_3(x) \cdot r_2(x) + r_3(x),\ &q_3(x) &= 0,\ &r_3(x) &= x^3 + x + 1 \\ &5.\ &r_2(x) &= q_4(x) \cdot r_3(x) + r_4(x),\ &q_4(x) &= x^2,\ &r_4(x) &= x^3 + x^2 + x + 1 \\ &6.\ &r_3(x) &= q_5(x) \cdot r_4(x) + r_5(x),\ &q_5(x) &= 1,\ &r_5(x) &= x^2 \\ &7.\ &r_4(x) &= q_6(x) \cdot r_5(x) + r_6(x),\ &q_6(x) &= x,\ &r_6(x) &= x^2 + x + 1 \\ &8.\ &r_5(x) &= q_7(x) \cdot r_6(x) + r_7(x),\ &q_7(x) &= 1,\ &r_7(x) &= x + 1 \\ &9.\ &r_6(x) &= q_8(x) \cdot r_7(x) + r_8(x),\ &q_8(x) &= x,\ &r_8(x) &= 1 \\ \ \\ \end{aligned} \]
\[ \begin{aligned} 1 = r_8(x) &= q_8(x)(q_7(x) \cdot r_6(x) + r_5(x)) + r_6(x) \\ &= (x + 1)(q_6(x) \cdot r_5(x) + r_4(x)) + (x) \cdot r_5(x) \\ &= (x^2)(q_5(x) \cdot r_4(x) + r_3(x)) + (x + 1) \cdot r_4(x) \\ &= (x^2 + x + 1)(q_4(x) \cdot r_3(x) + r_2(x)) + (x^2) \cdot r_3(x) \\ &= (x^4 + x^3)(q_3(x) \cdot r_2(x) + r_1(x)) + (x^2 + x + 1) \cdot r_2(x) \\ &= (x^2 + x + 1)(q_2(x) \cdot r_1(x) + r_0(x)) + (x^4 + x^3) \cdot r_1(x) \\ &= (x^5)(q_1(x) \cdot r_0(x) + a(x)) + (x^2 + x + 1) \cdot r_0(x) \\ &= (x^2 + x + 1)(q_0(x) \cdot a(x) + b(x)) + (x^5) \cdot a(x) \\ &= (x^7 + x^6)(a(x)) + (x^2 + x + 1) \cdot b(x) \\ \ \\ \end{aligned} \]
\[ \therefore\ s(x) = x^7 + x^6,\quad t(x) = x^2 + x + 1. \]
③ \(\ a(x) = x^4 + x + 1,\ b(x) = x^8 + x^4 + x^3 + x + 1.\)
\[ \begin{aligned} &1.\ &b(x) &= q_0(x) \cdot a(x) + r_0(x),\ &q_0(x) &= x^4,\ &r_0(x) &= x^5 + x^3 + x + 1 \\ &2.\ &a(x) &= q_1(x) \cdot r_0(x) + r_1(x),\ &q_1(x) &= 0,\ &r_1(x) &= x^4 + x + 1 \\ &3.\ &r_0(x) &= q_2(x) \cdot r_1(x) + r_2(x),\ &q_2(x) &= x,\ &r_2(x) &= x^4 + x + 1 \\ &4.\ &r_1(x) &= q_3(x) \cdot r_2(x) + r_3(x),\ &q_3(x) &= x,\ &r_3(x) &= x^3 + 1 \\ &5.\ &r_2(x) &= q_4(x) \cdot r_3(x) + r_4(x),\ &q_4(x) &= 1,\ &r_4(x) &= x^2 \\ &6.\ &r_3(x) &= q_5(x) \cdot r_4(x) + r_5(x),\ &q_5(x) &= x,\ &r_5(x) &= 1 \\ \ \\ \end{aligned} \]
\[ \begin{aligned} 1 = r_5(x) &= q_5(x)(q_4(x) \cdot r_3(x) + r_2(x)) + r_3(x) \\ &= (x + 1)(q_3(x) \cdot r_2(x) + r_1(x)) + (x) \cdot r_2(x) \\ &= (x^2)(q_2(x) \cdot r_1(x) + r_0(x)) + (x + 1) \cdot r_1(x) \\ &= (x^3 + x + 1)(q_1(x) \cdot r_0(x) + a(x)) + (x^2) \cdot r_0(x) \\ &= (x^2)(q_0(x) \cdot a(x) + b(x)) + (x^3 + x + 1) \cdot a(x) \\ &= (x^6 + x^3 + x + 1)(a(x)) + (x^2) \cdot b(x) \\ \ \\ \end{aligned} \]
\[ \therefore\ s(x) = x^6 + x^3 + x + 1,\quad t(x) = x^2. \]
(5)
Question
设 \(a(x),\ b(x)\) 是数域 \(\boldsymbol{F}_2\) 上的多项式,试计算它们的最大公因式 \((a(x), b(x)).\)
① \(\ a(x) = x^{15} + 1,\ b(x) = x^8 + x^4 + x^3 + x + 1.\)
② \(\ a(x) = x^7 + 1,\ b(x) = x^8 + x^4 + x^3 + x + 1.\)
Answer
解:
① \(\ a(x) = x^{15} + 1,\ b(x) = x^8 + x^4 + x^3 + x + 1.\)
\[ \begin{aligned} &1.\ &a(x) &= q_0(x) \cdot b(x) + r_0(x),\ &q_0(x) &= x^7,\ &r_0(x) &= x^{11} + x^{10} + x^8 + x^7 + 1 \\ &2.\ &b(x) &= q_1(x) \cdot r_0(x) + r_1(x),\ &q_1(x) &= 0,\ &r_1(x) &= x^8 + x^4 + x^3 + x + 1 \\ &3.\ &r_0(x) &= q_2(x) \cdot r_1(x) + r_2(x),\ &q_2(x) &= x^3,\ &r_2(x) &= x^{10} + x^8 + x^6 + x^4 + x^3 + 1 \\ &4.\ &r_1(x) &= q_3(x) \cdot r_2(x) + r_3(x),\ &q_3(x) &= 0,\ &r_3(x) &= x^8 + x^4 + x^3 + x + 1 \\ &5.\ &r_2(x) &= q_4(x) \cdot r_3(x) + r_4(x),\ &q_4(x) &= x^2,\ &r_4(x) &= x^8 + x^5 + x^4 + x^2 + 1 \\ &6.\ &r_3(x) &= q_5(x) \cdot r_4(x) + r_5(x),\ &q_5(x) &= 1,\ &r_5(x) &= x^5 + x^3 + x^2 + x \\ &7.\ &r_4(x) &= q_6(x) \cdot r_5(x) + r_6(x),\ &q_6(x) &= x^3,\ &r_6(x) &= x^6 + x^2 + 1 \\ &8.\ &r_5(x) &= q_7(x) \cdot r_6(x) + r_7(x),\ &q_7(x) &= 0,\ &r_7(x) &= x^5 + x^3 + x^2 + 1 \\ &9.\ &r_6(x) &= q_8(x) \cdot r_7(x) + r_8(x),\ &q_8(x) &= x,\ &r_8(x) &= x^4 + x^3 + x^2 + x + 1 \\ &10.\ &r_7(x) &= q_9(x) \cdot r_8(x) + r_9(x),\ &q_9(x) &= x,\ &r_9(x) &= x^4 + x + 1 \\ &11.\ &r_8(x) &= q_{10}(x) \cdot r_9(x) + r_{10}(x),\ &q_{10}(x) &= 1,\ &r_{10}(x) &= x^3 + x^2 \\ &12.\ &r_9(x) &= q_{11}(x) \cdot r_{10}(x) + r_{11}(x),\ &q_{11}(x) &= x,\ &r_{11}(x) &= x^3 + x + 1 \\ &13.\ &r_{10}(x) &= q_{12}(x) \cdot r_{11}(x) + r_{12}(x),\ &q_{12}(x) &= 1,\ &r_{12}(x) &= x^2 + x + 1 \\ &14.\ &r_{11}(x) &= q_{13}(x) \cdot r_{12}(x) + r_{13}(x),\ &q_{13}(x) &= x,\ &r_{13}(x) &= x^2 + 1 \\ &15.\ &r_{12}(x) &= q_{14}(x) \cdot r_{13}(x) + r_{14}(x),\ &q_{14}(x) &= 1,\ &r_{14}(x) &= x \\ &16.\ &r_{13}(x) &= q_{15}(x) \cdot r_{14}(x) + r_{15}(x),\ &q_{15}(x) &= x,\ &r_{15}(x) &= 1 \\ \ \\ \end{aligned} \]
\[ \therefore\ (a(x), b(x)) = 1. \]
② \(\ a(x) = x^7 + 1,\ b(x) = x^8 + x^4 + x^3 + x + 1.\)
\[ \begin{aligned} &1.\ &a(x) &= q_0(x) \cdot b(x) + r_0(x),\ &q_0(x) &= x,\ &r_0(x) &= x^4 + x^3 + 1 \\ &2.\ &b(x) &= q_1(x) \cdot r_0(x) + r_1(x),\ &q_1(x) &= x^3,\ &r_1(x) &= x^6 + x^3 + 1 \\ &3.\ &r_0(x) &= q_2(x) \cdot r_1(x) + r_2(x),\ &q_2(x) &= 0,\ &r_2(x) &= x^4 + x^3 + 1 \\ &4.\ &r_1(x) &= q_3(x) \cdot r_2(x) + r_3(x),\ &q_3(x) &= x^2,\ &r_3(x) &= x^5 + x^3 + x^2 + 1 \\ &5.\ &r_2(x) &= q_4(x) \cdot r_3(x) + r_4(x),\ &q_4(x) &= 0,\ &r_4(x) &= x^4 + x^3 + 1 \\ &6.\ &r_3(x) &= q_5(x) \cdot r_4(x) + r_5(x),\ &q_5(x) &= x,\ &r_5(x) &= x^4 + x^3 + x^2 + x + 1 \\ &7.\ &r_4(x) &= q_6(x) \cdot r_5(x) + r_6(x),\ &q_6(x) &= 1,\ &r_6(x) &= x^2 + x \\ &8.\ &r_5(x) &= q_7(x) \cdot r_6(x) + r_7(x),\ &q_7(x) &= x^2,\ &r_7(x) &= x^2 + x + 1 \\ &9.\ &r_6(x) &= q_8(x) \cdot r_7(x) + r_8(x),\ &q_8(x) &= 1,\ &r_8(x) &= 1 \\ \end{aligned} \]
\[ \therefore\ (a(x), b(x)) = 1. \]
(9)
Question
证明 \(f(x) = x^8 + x^4 + x^3 + x + 1\) 是数域 \(\boldsymbol{F}_2\) 上的不可约多项式,从而 \(\boldsymbol{R}_{2^8} = \boldsymbol{F}_2[x] / (f(x))\) 是一个域.
Answer
证明:
\(\mathrm{deg}\ f = 8\).
对于 \(\mathrm{deg}\ p \leq \frac{1}{2} \mathrm{deg}\ f = 4\) 的不可约多项式,
\(p(x) = x, x + 1, x^2 + x + 1, x^3 + x + 1, x^3 + x^2 + 1, x^4 + x + 1, x^4 + x^3 + 1, x^4 + x^3 + x^2 + x + 1\).
经检验,对这些 \(p(x)\) 均有 \(p(x) \nmid f(x)\),则 \(f(x)\) 为不可约多项式.
(10)
Question
设 \(a(x) = x^6 + x^4 + x^2 + x + 1,\ b(x) = x^7 + x + 1\). 在 \(\boldsymbol{R}_{2^8} = \boldsymbol{F}_2[x] / (x^8 + x^4 + x^3 + x + 1)\) 中计算 \(a(x) + b(x)\),\(a(x) \cdot b(x)\),\(a(x)^2\),\(a(x)^{-1}\),\(b(x)^{-1}\).
Answer
解:
\(a(x) + b(x) = x^7 + x^6 + x^4 + x^2 \pmod{p(x)}\).
\(a(x) \cdot b(x) = x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \equiv x^7 + x^6 + 1 \pmod{p(x)}\).
\((a(x))^2 = x^{12} + x^8 + x^4 + x^2 + 1 \equiv x^7 + x^5 + x^2 + 1 \pmod{p(x)}\).
\(a(x)^{-1}:\)
\[ \begin{aligned} p(x) &= x^2 \cdot a(x) + (x^6 + 1) \\ a(x) &= 1 \cdot (x^6 + 1) + x^4 + x^2 + x \\ x^6 + 1 &= x^2 \cdot (x^4 + x^2 + x) + x^4 + x^3 + 1 \\ x^4 + x^2 + x &= 1 \cdot (x^4 + x^3 + 1) + x^3 + x^2 + x + 1 \\ x^4 + x^3 + 1 &= x \cdot (x^3 + x^2 + x + 1) + x^2 + x + 1 \\ x^3 + x^2 + x + 1 &= x \cdot (x^2 + x + 1) + 1 \\ \ \\ \end{aligned} \]
\[ \begin{aligned} 1 &= x \cdot (x \cdot (x^3 + x^2 + x + 1) + x^4 + x^3 + 1) + x^3 + x^2 + x + 1 \\ &= (x^2 + 1) \cdot (1 \cdot (x^4 + x^3 + 1) + x^4 + x^2 + x) + x \cdot (x^4 + x^3 + 1) \\ &= (x^2 + x + 1) \cdot (x^2 \cdot (x^4 + x^2 + x) + x^6 + 1) + (x^2 + 1) \cdot (x^4 + x^2 + x) \\ &= (x^4 + x^3 + 1) \cdot (1 \cdot (x^6 + 1) + a(x)) + (x^2 + x + 1) \cdot (x^6 + 1) \\ &= (x^4 + x^3 + x^2 + x) \cdot (x^2 \cdot a(x) + p(x)) + (x^4 + x^3 + 1) \cdot a(x) \\ &= (x^6 + x^5 + 1) \cdot a(x) + (x^4 + x^3 + x^2 + x) \cdot p(x) \\ \ \\ \end{aligned} \]
\[ \therefore\ a(x)^{-1} = x^6 + x^5 + 1. \]
\(b(x)^{-1}:\)
\[ \begin{aligned} p(x) &= x \cdot b(x) + (x^4 + x^3 + x + 1) \\ b(x) &= x^3 \cdot (x^4 + x^3 + x + 1) + x^6 + x^4 + x^3 + x + 1 \\ x^6 + x^4 + 3 + x + 1 &= x^2 \cdot (x^4 + x^3 + x + 1) + x^5 + x^4 + x^3 + x + 1 \\ x^5 + x^4 + x^2 + x + 1 &= x \cdot (x^4 + x^3 + x + 1) + 1 \\ \ \\ \end{aligned} \]
\[ \begin{aligned} 1 &= b(x) + (x^4 + x^3 + x + 1)(x^3 + x^2 + x) \\ &= b(x) + (p(x) + x \cdot b(x)) \cdot (x^3 + x^2 + x) \\ &= (x^3 + x^2 + x) \cdot p(x) + (x^4 + x^3 + x^2 + 1) \cdot b(x) \\ \ \\ \end{aligned} \]
\[ \therefore\ b(x)^{-1} = x^4 + x^3 + x^2 + 1. \]
第13章 域的结构
(2)
Question
求 \(\boldsymbol{F}_{2^4} = \boldsymbol{F}_2[x] / (x^4 + x^3 + 1)\) 中的生成元 \(g(x)\),并计算 \(g(x)^t,\ t = 0, 1, \cdots, 14\) 和所有生成元.
Answer
解:
因为 \(|\boldsymbol{F}_{2^4}^*| = 15 = 3 \cdot 5\),所以满足
\[ g(x)^3 \not \equiv 1 \pmod{x^4 + x^3 + 1},\quad g(x)^5 \not \equiv 1 \pmod{x^4 + x^3 + 1} \]
的元素 \(g(x)\) 都是生成元.
对于 \(g(x) = x\),有
\[ x^3 \equiv x^3 \not \equiv 1 \pmod{x^4 + x^3 + 1},\quad x^5 \not \equiv 1 \pmod{x^4 + x^3 + 1} \]
所以 \(g(x) = x\) 是 \(\boldsymbol{F}_2[x] / (x^4 + x^3 + 1)\) 的生成元.
对于 \(t = 0, 1, 2, \cdots, 14\),计算 \(g(x)^t \pmod{x^4 + x + 1}\).
\[ \begin{aligned} &g(x)^{0} \equiv 1,&\quad &g(x)^{1} \equiv x,&\quad &g(x)^{2} \equiv x^2, \\ &g(x)^{3} \equiv x^3,&\quad &g(x)^{4} \equiv x^3 + 1,&\quad &g(x)^{5} \equiv x^3 + x + 1 , \\ &g(x)^{6} \equiv x^3 + x^2 + x + 1,&\quad &g(x)^{7} \equiv x^2 + x + 1,&\quad &g(x)^{8} \equiv x^3 + x^2 + x, \\ &g(x)^{9} \equiv x^2 + x,&\quad &g(x)^{10} \equiv x^3 + x,&\quad &g(x)^{11} \equiv x^3 + x^2 + 1, \\ &g(x)^{12} \equiv x + 1,&\quad &g(x)^{13} \equiv x^2 + x,&\quad &g(x)^{14} \equiv x^3 + x^2, \\ \ \\ \end{aligned} \]
所有生成元为 \(g(x)^t,\ (t, \varphi(15)) = 1\).
\[ \begin{aligned} g(x)^1 &= x,&\quad &g(x)^2 = x^2,&\quad &g(x)^4 = x^3 + 1,&\quad &g(x)^7 = x^2 + x + 1, \\ g(x)^8 &= x^3 + x^2 + x,&\quad &g(x)^{11} = x^3 + x^2 + 1,&\quad &g(x)^{13} = x^2 + x,&\quad &g(x)^{14} = x^3 + x^2, \\ \ \\ \end{aligned} \]
(3)
Question
证明 \(x^8 + x^4 + x^3 + x + 1\) 是 \(\boldsymbol{F}_2\) 上的不可约多项式,从而 \(\boldsymbol{F}_2[x] / (x^8 + x^4 + x^3 + x + 1)\) 是一个 \(\boldsymbol{F}_{2^8}\) 域.
Answer
证明:
\(\because\ \boldsymbol{F}_2[x]\) 中的所有次数 \(\leq 2\) 的不可约多项式为 \(x, x + 1, x^2 + x + 1\),且
\[ \begin{aligned} x^8 + x^4 + x^3 + x + 1 &= x \cdot (x^7 + x^3 + x^2 + 1) + 1 \\ &= (x + 1) \cdot (x^7 + x^6 + x^5 + x^4 + x^2 + x) + 1 \\ &= (x^2 + x + 1)(x^6 + x^5 + x^3) + x + 1 \\ \ \\ \end{aligned} \]
\[ \begin{aligned} \therefore\ &x \nmid\ x^8 + x^4 + x^3 + x + 1, \\ &x + 1 \nmid\ x^8 + x^4 + x^3 + x + 1, \\ &x^2 + x + 1 \nmid\ x^8 + x^4 + x^3 + x + 1. \\ \ \\ \end{aligned} \]
\(\therefore\ x^8 + x^4 + x^3 + x + 1\) 是 \(\boldsymbol{F}_2[x]\) 中的不可约多项式.
因此 \(\boldsymbol{F}_2[x] / (x^8 + x^4 + x^3 + x + 1)\) 是一个 \(\boldsymbol{F}_{2^8}\) 域.
(9)
Question
求出 \(\boldsymbol{F}_3[x]\) 中的所有(一个)\(4\) 次 \(3\) 项和 \(5\) 项不可约多项式。
Answer
解:
对 \(\boldsymbol{F}_3[x]\) 的元素数域用 \(-1, 0, 1\) 记,先只考虑首一多项式.
- 对 \(1\) 次有 \(x, x + 1, x - 1\).
对 \(2\) 次及以上,常数项只能为 \(1\) 或 \(-1\),以保证不被 \(x\) 整除.
- 设 \(f(x) = x^2 + ax + 1,\ f(1) = a - 1,\
f(-1) = -a - 1\).
\(\therefore\ a = \pm 1\) 时分别被 \(x \mp 1\) 整除,只有 \(f(x) = x^2 + 1\) 不可约.
再设 \(f(x) = x^2 + ax - 1,\ f(\pm 1) = \pm a, a = \pm 1\) 时不可约,故有 \(x^2 + 1, x^2 + x - 1, x^2 - x - 1\) 不可约. - 对 \(3\) 次,讨论 \(f(x) = x^3 + ax^2 + bx + 1\),代入 \(\pm 1 \Rightarrow \begin{cases}a + b - 1 \not ={0}
\\ a - b \not ={0} \end{cases}\).
列举得 \(x^3 - x^2 + 1, x^3 - x^2 + x + 1, x^3 - x + 1, x^3 + x^2 - x + 1\).
常数项为 \(-1\) 对应 \(x^3 + x^2 - 1, x^3 + x^2 + x - 1, x^3 - x - 1, x^3 - x^2 - x - 1\).
- 对 \(4\) 次,不可约则不含 \(1, 2\) 次因子.
讨论 \(f(x) = x^4 + ax^3 + bx^2 + cx + 1\),代入 \(\pm 1 \Rightarrow \begin{cases}a + b + c - 1 \not ={0} \\ -a + b - c - 1 \not ={0} \end{cases}\).- 对 \(3\) 项有:
\(\begin{cases}a = 0 \\ b = -1 \\ c = 0 \end{cases}\) 或 \(\begin{cases}a = 0 \\ b = 0 \\ c = 0 \end{cases}\)
得 \(\begin{cases}x^4 + 1 \\ x^4 - x^2 + 1 \end{cases}\),
常数项为 \(-1\) 对应 \(\begin{cases}x^4 - 1 \\ x^4 + x^2 - 1 \end{cases}\).
除去首一限制有:
\(\pm(x^4 + 1), \pm(x^4 - x^2 + 1),\)
\(\pm(x^4 - 1), \pm(x^4 + x^2 - 1)\).
- 对 \(5\) 项有:
\(\begin{cases}a = 1 \\ b = 1 \\ c = -1 \end{cases}\) 或 \(\begin{cases}a = -1 \\ b = 1 \\ c = -1 \end{cases}\)
得 \(\begin{cases}x^4 + x^3 + x^2 - x + 1 \\ x^4 - x^3 + x^2 - x + 1 \end{cases}\),
常数项为 \(-1\) 对应 \(\begin{cases}x^4 + x^3 - x^2 - x - 1 \\ x^4 - x^3 - x^2 - x - 1 \end{cases}\).
除去首一限制有:
\(\pm(x^4 + x^3 + x^2 - x + 1), \pm(x^4 - x^3 + x^2 - x + 1),\)
\(\pm(x^4 + x^3 - x^2 - x - 1), \pm(x^4 - x^3 - x^2 - x - 1)\).
- 对 \(3\) 项有: