信息安全数学基础II-2019~2020_2_A卷

2019-2020_2_A卷

一、计算题(共 6 小题,每小题 10 分,共 60 分)

1. 已知 \(a = 527, b = 1411\),求最大公因子\((a, b)\)和最小公倍数\([a, b]\)

解:

由辗转相除法:

\[ \begin{aligned} 527 &= 0 \times 1411 + 527 \\ 1411 &= 2 \times 527 + 357 \\ 527 &= 1 \times 357 + 170 \\ 357 &= 2 \times 170 + 17 \\ 170 &= 10 \times 17 + 0 \end{aligned} \]

\(\therefore \ (527, 1411) = 17\)

\[ [a, b] = \frac{ab}{(a, b)} = \frac{527 \times 1411}{17} = 43741 \]

\(\therefore \ [527, 1411] = 43741\)

2. 利用勒让德符号判断同余方程 \(x^2 \equiv 30 \pmod{41}\)是否有解?

解:

勒让德符号为 \[ \begin{aligned} & \bigg( \frac{30}{41} \bigg) = \bigg( \frac{2}{41} \bigg) \bigg( \frac{5}{41} \bigg) \bigg( \frac{3}{41} \bigg) \end{aligned} \]

其中

\[ \bigg( \frac{2}{41} \bigg) = (-1)^{\frac{40 \times 42}{8}} = 1 \\ \ \\ (5, 41) = 1 \qquad (3, 41) = 1 \]

则,由二次互反律

\[ \begin{aligned} & \bigg( \frac{5}{41} \bigg) = (-1)^{\frac{4}{2} \frac{40}{2}} (\frac{1}{5}) = 1 \\ \ \\ & \bigg( \frac{3}{41} \bigg) = (-1)^{\frac{2}{2} \frac{40}{2}} (\frac{2}{3}) = -1 \\ \ \\ & \therefore \bigg(\frac{30}{41} \bigg) = 1 \cdot 1 \cdot (-1) = -1 \\ \ \\ & \end{aligned} \]

\(\therefore\ 30\) 不是模 \(41\) 的平方剩余,原式无解。

3. 求乘法群\(\mathbf{F}_{23}^*\)的所有生成元。

解:

\(\mathbf{F}_{23}^{*} = (Z/23Z)^{*}\) 为模 \(23\) 的简化剩余系;

\(\varphi(23) = 22\),因此群阶为 \(22\).

由原根 \(g\) 性质,\(g, g^2, \cdots, g^{\varphi(m)}\) 构成模 \(m\) 的简化剩余系;

\(\therefore \ 23\) 的原根 \(g = 5\) 为一个 \(\mathbf{F}_{23}^{*}\) 的生成元.

一共有 \(\varphi(22) = 10\) 个生成元,形式为 \(g^j, (j, 22) = 1\ (j = 1, 3, 5, 7, 9, 13, 15, 17, 19, 21)\).

\(\therefore \space\) 生成元 \(g^j\)\(5, 10, 20, 17, 11, 21, 19, 15, 7, 14\).

4. 求解同余式组

\[ \begin{cases} \begin{aligned} x &\equiv 2 \pmod{3} \\ 3x &\equiv 4 \pmod{5} \\ x &\equiv 4 \pmod{7} \end{aligned} \end{cases} \]

解:

\(3x \equiv 4 \pmod{5}\),得 \(x \equiv 3 \pmod{5}\);

因此原同余式组等价为

\[ \begin{cases} \begin{aligned} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 4 \pmod{7} \end{aligned} \end{cases} \]

\(\mathrm{CRT}\)

\[ \begin{aligned} & m = 3 \times 5 \times 7 = 105 \\ \ \\ & M_1 = 5 \times 7 = 35 \qquad M_{1}^{'} = 2 \\ \ \\ & M_2 = 3 \times 7 = 21 \qquad M_{2}^{'} = 1 \\ \ \\ & M_3 = 3 \times 5 = 15 \qquad M_{3}^{'} = 1 \\ \ \\ \end{aligned} \]

\(\therefore\) 原同余式组的解为 \(x \equiv 2 \times 35 \times 2 + 3 \times 21 + 4 \times 15 \pmod{105}\)

\(\therefore x \equiv 53 \pmod{105}\).

5. 求解同余式 \(f(x) = 3x^4 + 17x^3 - 5x + 23 \mod{25}\)

解:

(1)\(f'(x) = 12x^3 + x^2 + 20 \mod{25};\)
(2)验证 \(f(x) = 3x^4 + 2x^3 + 3 \mod{5}\) 的解为 \(x_1 = 3 \mod{5};\)
(3)将 \(x = 3 + 5t\) 代入方程 \[ f(3) + f'(3) \cdot t \cdot 5 \equiv 0 \mod{25}; \]

\(f(3) \equiv 10 \mod{25},\ f'(3) \equiv 3 \mod{25}\),也即

\[ 10 + 3 \cdot t \cdot 5 \equiv 0 \mod{25}\ 或\ 2 + 3 \cdot t \equiv 0 \mod{5} \]

解得 \(t \equiv 1 \mod{5}\),所以 \(x = 3 + 5t \equiv 8 \mod{25}\)

6. 假设椭圆曲线 \(y^2 = x^3 + 5x + 3 \pmod{11}\)上的两点 \(P = (x_1, y_1), Q = (x_2, y_2)\) 之和为 \(P_3 = (x_3, y_3) = P + Q \not ={O}\) 的计算公式为

\[ x_3 = \lambda^2 - x_1 - x_2, \quad y_3 = (x_1 - x_3)\lambda - y_1 \]

其中 ① \(x_1 \not ={x_2}\)时,\(\lambda = \frac{y_2 - y_1}{x_2 - x_1}\),② \(x_1 = x_2\),且\(Q \not ={-P}\)时,\(\lambda = \frac{3x_{1}^{2} + 5}{2y_1}\).

\(P = (3, 1)\),试求\(3P\)

解:

首先计算 \(2P\),因为

\[ \lambda = \frac{3x_{1}^{2} + 5}{2y_1} = \frac{3 \times 3^2 + 5}{2 \times 1} = 16; \]

所以

\[ \begin{aligned} x_3 &= \lambda^{2} - x_1 - x_2 = 16^2 - 3 - 3 = 250 \equiv 8 \pmod{11}; \\ y_3 &= (x_1 - x_3)\lambda - y_1 = (3 - 250) \times 16 - 1 = -3953 \equiv 7 \pmod{11} \end{aligned} \]

\(2P = (8, 7)\);

同理计算 \(3P = 2P + P = (8, 7) + (3, 1)\),其中

\[ \lambda = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6}{5} = 6 \times 5^{-1} = 6 \times 9 = 54 \equiv 10 \pmod{11}; \]

因此容易得 \(3P = 2P + P = (8, 7) + (3, 1) = (1, 8)\)

二、 证明题(共 10 分)

假定 \(a\)\(b\) 是一个群 \(\mathrm{G}\) 的两个元,并且 \(ab = ba\)。又假定 \(a\) 的阶是 \(m\)\(b\) 的阶是 \(n\) ,并且 \((m, n) = 1\)。证明:\(ab\) 的阶是 \(mn\)

证明:

\(\mathrm{G}\) 是一个群,\(a, b \in \mathrm{G},\ ab = ba\),由群封闭性,\(ab \in \mathrm{G}\).

\(ab\) 的阶为 \(k\)\((ab)^k = e\).

根据题干,\(a^m = b^n = e\),因此\((a^m)^n (b^n)^m = e\).

由群元阶的性质:\(k \mid mn\).

\((ab)^k = a^k b^k = e.\) 所以\(b^k\) 也是 \(a^k\) 的逆元.

\(a\) 的逆元 \(a^{-1}\),于是 \((a a^{-1})^k = e = a^k a^{-k}\).

所以 \((a^{-1})^k = a^{-k}\) 也是 \(a^k\) 逆元. 根据群逆元的唯一性,\(b^k = a^{-k}\).

所以 \((b^n)^k = b^{kn} = (a^{-k})^n\),注意到 \(b^n = e\).

所以 \(a^{-kn} = e\).

所以 \(m \mid (-kn) \Leftrightarrow m \mid kn\),又根据题干 \((m, n) = 1\).

所以 \((m, kn) = (m, k) = m \Rightarrow m \mid k\).

同理,\(a^k\) 也是 \(b^k\) 的逆元,于是 \(a^k = b^{-k}\),由 \(a^m = e \Rightarrow a^{km} = b^{-km} = e\).

所以 \(n \mid km,\quad (n, km) = n\),又 \((m, n) = 1,\quad (n, km) = (n, k) = n \Rightarrow n \mid k\).

由于 \(m \mid k,\quad n \mid k\),所以 \([m, n] \mid k\).

\((m, n) = 1\),因此 \([m, n] = mn\),所以 \(mn \mid k\).

又之前有 \(k \mid mn,\quad mn \mid k\)

\(\therefore k = mn.\) 综上,\(ab\) 的阶 \(k = mn\).

三、应用题(每小题 15 分,共 30 分)

1. 构造有限域 \(GF(16)=\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\}\)(其中模多项式为\(m(x) = x^4 + x + 1\))的加法表和乘法表。(填表即可)

加法表
\(\oplus\) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\)
1 \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\)
2 \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\)
3 \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\)
乘法表
\(\otimes\) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\)
1 \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\)
2 \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\)
3 \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\) \(\quad\)

解:

加法表
\(\oplus\) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
乘法表
\(\otimes\) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13
3 0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2

Reference

2.著名 \(\mathrm{RSA}\) 公钥密码加密系统如下:
① 随机选择两个大素数 \(p\)\(q\),而且保密;
② 计算 \(n = pq\),将 \(n\) 公开;
③ 计算欧拉函数 \(\varphi(n) = (p - 1)(q - 1)\) ,并对 \(\varphi(n)\) 保密;
④ 随机选取正整数 \(e \in (1, \varphi(n))\) 且有 \((e, \varphi(n)) = 1\),并将 \(e\) 公开;
⑤ 根据 \(ed \equiv 1 \mod{\varphi(n)}\) ,求出 \(d\) ,并对 \(d\) 保密;
⑥ 加密运算: \(C = M^e \mod{n}\); ⑦ 解密运算: \(M = C^d \mod{n}\)

现令公钥 \(n = 133,\ e = 101\)。 问:(1)若待加密的明文 \(M = 83\),求相应的密文 \(C\);(2)若待加密的明文 \(C = 131\),求相应的密文 \(M\)

解:

(1)

密文 \(C = M^e \mod{n} = 83^{101} \mod{133} = 125\);

用反复平方法计算,\(101 = (1100101)_2\);

\[ \begin{aligned} &(1)\ n_0 = 1,\ a_0 = 83,\ b_1 = 83^2 \equiv 106 \pmod{133} \\ \ \\ &(2)\ n_1 = 0,\ a_1 = a_0 = 83,\ b_2 = b_{1}^{2} \equiv 64 \\ \ \\ &(3)\ n_2 = 1,\ a_2 = a_1 \times b_2 = 125,\ b_3 = b_{2}^{2} \equiv 106 \\ \ \\ &(4)\ n_3 = 0,\ a_3 = a_2 = 125,\ b_4 = b_{3}^{2} \equiv 64 \\ \ \\ &(5)\ n_4 = 0,\ a_4 = a_3 = 125,\ b_5 = b_{4}^{2} \equiv 106 \\ \ \\ &(6)\ n_5 = 1,\ a_5 = a_4 \times b_5 = 83,\ b_6 = b_{5}^{2} \equiv 64 \\ \ \\ &(7)\ n_6 = 1,\ a_6 = a_5 \times b_6 = 125 \end{aligned} \]

(2)

首先用广义欧几里得算法求出私钥 \(d = 77\)

则相应的明文 \(M = C^d \mod{n} = 131^{77} \mod{133} = (-2)^{77} \mod{133} = 101\)

PDF Resource

Preview