First Blog

This is xyz's first blog.

Welcome to Hexo!

Test for mermaid graph:

sequenceDiagram
    Alice->>+Bob: Hello Bob, how are you?
    Alice->>+Bob: Bob, can you hear me?
    Bob-->>-Alice: Hi Alice, I can hear you!
    Bob-->>-Alice: I feel great!

Test for mathematical expressions below:

6.

Question

\(C_1\)\(C_2\) 为服从正态分布的两个训练集合,\(x\) 为一个待测样本,则根据贝叶斯公式有 \(P(C_1|x) = \frac{P(x \mid C_1)P(C_1)}{P(x \mid C_1)P(C_1) + P(x \mid C_2)P(C_2)}\)

若设 \(z = \mathrm{ln}\frac{p(x \mid C_1)P(C_1)}{p(x \mid C_2)P(C_2)}\)

证明:\(z\) 是一个线性超平面,并且 \(P(C_1|x) = \mathop{\sigma(z)}\limits_{\begin{aligned}\substack{\text{Sigmoid}}\\ \substack{\text{function}} \end{aligned}}\)

Answer

证明:

由贝叶斯公式,

\[ P(C_1|x) = \frac{P(x \mid C_1)P(C_1)}{P(x \mid C_1)P(C_1) + P(x \mid C_2)P(C_2)} \\ P(C_1|x) = \frac{1}{1 + \frac{P(x \mid C_2)P(C_2)}{P(x \mid C_1)P(C_1)}} \]

\(z = \mathrm{ln}\frac{p(x \mid C_1)P(C_1)}{p(x \mid C_2)P(C_2)}\),代入以上得

\[ P(C_1|x) = \frac{1}{1 + e^{-z}} = \mathop{\sigma(z)}\limits_{\begin{aligned} \substack{\text{Sigmoid}}\\ \substack{\text{function}} \end{aligned}} \]

即证得 \(P(C_1|x) = \mathop{\sigma(z)}\limits_{\begin{aligned} \substack{\text{Sigmoid}}\\ \substack{\text{function}} \end{aligned}}\)

下面证明 \(z\) 是一个线性超平面。

\(z\) 变换得:

\[ z = \mathrm{ln}\frac{P(x \mid C_1)}{P(x \mid C_2)} + \mathrm{ln}\frac{P(C_1)}{P(C_2)} \tag{1} \]

\(C_1\) 在训练集中出现次数为 \(N_1\)\(C_2\) 在训练集中出现次数为 \(N_2\),则

\[ \mathrm{ln}\frac{P(C_1)}{P(C_2)} = \mathrm{ln}\frac{\frac{N_1}{N_1 + N_2}}{\frac{N_2}{N_1 + N_2}} = \mathrm{ln}\frac{N_1}{N_2} \]

其中 \(P(x \mid C_1)\)\(P(x \mid C_2)\) 遵从正态分布,即

\[ P(x \mid C_1) = \frac{1}{2\pi^{\frac{D}{2}}}\frac{1}{|\Sigma_1|^{\frac{1}{2}}}e^{-\frac{1}{2}(x - \mu_1)^\top \Sigma_1^{-1}(x - \mu_1)} \\ \ \\ P(x \mid C_2) = \frac{1}{2\pi^{\frac{D}{2}}}\frac{1}{|\Sigma_2|^{\frac{1}{2}}}e^{-\frac{1}{2}(x - \mu_2)^\top \Sigma_2^{-1}(x - \mu_2)} \]

代入 \((1)\) 式中第一项,

\[ \begin{aligned} &\mathrm{ln}\frac{P(x \mid C_1)}{P(x \mid C_2)}\\ \ \\ &= \mathrm{ln} \frac{ \frac{1}{2\pi^{\frac{D}{2}}} \frac{1}{|\Sigma_1|^{\frac{1}{2}}} e^{-\frac{1}{2}(x - \mu_1)^\top \Sigma_1^{-1}(x - \mu_1)} } { \frac{1}{2\pi^{\frac{D}{2}}} \frac{1}{|\Sigma_2|^{\frac{1}{2}}} e^{-\frac{1}{2}(x - \mu_2)^\top \Sigma_2^{-1}(x - \mu_2)} } \\ \ \\ &= \mathrm{ln}\frac{ \frac{1}{|\Sigma_1|^{\frac{1}{2}}}e^{-\frac{1}{2}(x - \mu_1)^\top \Sigma_1^{-1}(x - \mu_1)}}{\frac{1}{|\Sigma_2|^{\frac{1}{2}}}e^{-\frac{1}{2}(x - \mu_2)^\top \Sigma_2^{-1}(x - \mu_2)}} \\ \ \\ &= \mathrm{ln}\frac{ \frac{1}{|\Sigma_1|^{\frac{1}{2}}}}{\frac{1}{|\Sigma_2|^{\frac{1}{2}}}}e^{-\frac{1}{2}[(x - \mu_1)^\top \Sigma_1^{-1}(x - \mu_1) - (x - \mu_2)^\top \Sigma_2^{-1}(x - \mu_2)]} \\ \ \\ &= \mathrm{ln}\frac{ \frac{1}{|\Sigma_1|^{\frac{1}{2}}}}{\frac{1}{|\Sigma_2|^{\frac{1}{2}}}} - \frac{1}{2}[(x - \mu_1)^\top \Sigma_1^{-1}(x - \mu_1) - (x - \mu_2)^\top \Sigma_2^{-1}(x - \mu_2)] \end{aligned} \]

\((x - \mu_1)^\top \Sigma_1^{-1}(x - \mu_1)\) 化简:

\[ (x - \mu_1)^\top \Sigma_1^{-1}(x - \mu_1) = x^\top \Sigma_1^{-1}x - 2\mu_1\Sigma_1^{-1}x + \mu_1^\top \Sigma_1^{-1}\mu_1 \]

同理得

\[ (x - \mu_2)^\top \Sigma_2^{-1}(x - \mu_2) = x^\top \Sigma_2^{-1}x - 2\mu_2\Sigma_2^{-1}x + \mu_2^\top \Sigma_2^{-1}\mu_2 \]

代入 \(z\),得

\[ z = \mathrm{ln}\frac{|\Sigma_2|^{\frac{1}{2}}}{|\Sigma_1|^{\frac{1}{2}}{}} - \frac{1}{2}[x^\top \Sigma_1^{-1}\mu_1 - 2\mu_1\Sigma_1^{-1}x + \mu_1^\top \Sigma_1^{-1}\mu_1 - x^\top \Sigma_2^{-1}x + 2\mu_2\Sigma_2^{-1}x - \mu_2^\top \Sigma_2^{-1}\mu_2] + \mathrm{ln}\frac{N_1}{N_2} \]

由于如果每个类的协方差 \(\Sigma\) 不同,会使方差过大,参数过多。则可认为 \(\Sigma_1 = \Sigma_2 = \Sigma\).

于是化简 \(z\) 为:

\[ z = (\mu_1 - \mu_2)\Sigma^{-1}x - \frac{1}{2}\mu_1^\top \Sigma^{-1}\mu_1 + \frac{1}{2}\mu_2^\top \Sigma^{-1}\mu_2 + \mathrm{ln}\frac{N_1}{N_2} \]

观察,令 $(_1 - _2)^{-1} = ^$, \(-\frac{1}{2}\mu_1^\top \Sigma^{-1}\mu_1 + \frac{1}{2}\mu_2^\top \Sigma^{-1}\mu_2 + \mathrm{ln}\frac{N_1}{N_2} = b\)

\[ z = \omega^\top x + b \]

所以证得:\(z\) 是一个线性超平面。

综上,证得:\(z\) 是一个线性超平面,并且 \(P(C_1|x) = \mathop{\sigma(z)}\limits_{\begin{aligned} \substack{\text{Sigmoid}}\\ \substack{\text{function}} \end{aligned}}\)